翻訳と辞書
Words near each other
・ Primorsky Partisans
・ Primorsky railway station
・ Primorsky, Primorsky Krai
・ Primorsky, Russia
・ Primitive Radio Gods
・ Primitive Reason
・ Primitive recursive arithmetic
・ Primitive recursive function
・ Primitive recursive functional
・ Primitive recursive set function
・ Primitive reflexes
・ Primitive Rhythm Machine
・ Primitive ring
・ Primitive road
・ Primitive root
Primitive root modulo n
・ Primitive Scottish Rite
・ Primitive skills
・ Primitive socialist accumulation
・ Primitive streak
・ Primitive ventricle
・ Primitive Wars
・ Primitive World
・ Primitive wrapper class
・ Primitives
・ Primitivism
・ Primitivity
・ Primitivo (disambiguation)
・ Primitivo González del Alba
・ Primitivo Lázaro


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Primitive root modulo n : ウィキペディア英語版
Primitive root modulo n

In modular arithmetic, a branch of number theory, a number ''g'' is a primitive root modulo ''n'' if every number coprime to ''n'' is congruent to a power of ''g'' modulo ''n''. That is, for every integer ''a'' coprime to ''n'', there is an integer ''k'' such that ''g''''k'' ≡ ''a'' (mod ''n''). Such ''k'' is called the index or discrete logarithm of ''a'' to the base ''g'' modulo ''n''.
In other words, ''g'' is a generator of the multiplicative group of integers modulo n.
Gauss defined primitive roots in Article 57 of the Disquisitiones Arithmeticae (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist for a prime n. In fact, the ''Disquisitiones'' contains two proofs: the one in Article 54 is a nonconstructive existence proof, while the other in Article 55 is constructive.
==Elementary example==
The number 3 is a primitive root modulo 7〔http://www.brynmawr.edu/math/people/stromquist/numbers/primitive.html〕 because
::
\begin
3^1 &=& 3 &=& 3^0 \times 3 &\equiv& 1 \times 3 &=& 3 &\equiv& 3 \pmod 7 \\
3^2 &=& 9 &=& 3^1 \times 3 &\equiv& 3 \times 3 &=& 9 &\equiv& 2 \pmod 7 \\
3^3 &=& 27 &=& 3^2 \times 3 &\equiv& 2 \times 3 &=& 6 &\equiv& 6 \pmod 7 \\
3^4 &=& 81 &=& 3^3 \times 3 &\equiv& 6 \times 3 &=& 18 &\equiv& 4 \pmod 7 \\
3^5 &=& 243 &=& 3^4 \times 3 &\equiv& 4 \times 3 &=& 12 &\equiv& 5 \pmod 7 \\
3^6 &=& 729 &=& 3^5 \times 3 &\equiv& 5 \times 3 &=& 15 &\equiv& 1 \pmod 7 \\
\end

Here we see that the period of 3''k'' modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. Curiously, permutations created in this way (and their circular shifts) have been shown to be Costas arrays.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Primitive root modulo n」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.